Paraquat resistance is gaining momentum in Australia

Another three weed species in Australia have just confirmed resistant to paraquat – Cudweed (Gamochaeta pensylvanica), blackberry nightshade (Solanum nigrum) and crowsfoot grass (Eleusine indica) taking the total number of species to 9 in Australia (Table 1).

Paraquat resistant crowsfoot grass regrowing following spraying. Image: P. Boutsalis & C. Preston

Overseas there are now 24 species resistant to paraquat, from the Middle East through to New Zealand, comprising of 6 grass and 18 broadleaf species.

Table 1 Species that have developed paraquat resistance in Australia
(Australian Glyphosate Sustainability Working Group)

Species

Common name

Year first confirmed

State

Crop

Resistance to other herbicides / MOAs

Arctotheca calendula

Capeweed

1984

Victoria

lucerne

Diquat (L)

Hordeum glaucum

Northern barley grass

1983

Victoria

lucerne

Diquat (L)

Hordeum leporinum

Barley grass

1988

Victoria

lucerne

Diquat (L)

Vulpia bromoides

Silver grass

1990

Victoria

lucerne

Diquat (L)

Mitracarpus

hirtus

Small square weed

2007

Queensland

mangoes

Diquat (L)

Lolium rigidum

Annual ryegrass

2010

South Australia

Pasture seed

A / M - 2 populations

Gamochaeta pensylvanica

Cudweed

2015

Queensland

Tomatoes, peanuts, sugar cane, avocados

 

Solanum nigrum

Blackberry nightshade

2015

Queensland

Tomatoes, peanuts, sugar cane, avocados

 

Eleusine indica

Crowsfoot grass

2015

Queensland

Tomatoes, peanuts, sugar cane, avocados

 

 

As can be seen from Table 1, paraquat resistance hasn’t developed in broadacre cropping yet and the listed rotations, or lack of them, were highly reliant on paraquat for weed control.  However the widespread adoption of paraquat either as a second knock or an alternative to glyphosate over the past 10 years we probably don’t have long to wait. There are rumours of a glyphosate-paraquat resistant population of annual ryegrass (L. rigidum) about to confirmed from southern Western Australia.

In 2013 we confirmed a ryegrass population from a Great Southern vineyard that is strongly resistant to both glyphosate and paraquat which was the result of a vineyard manager rotating between these two important herbicides. Rotating herbicide modes of action buys you time, but doesn’t prevent resistance.

The answer?

The only way to stop herbicide resistance in its tracks is ensure no survivors of a herbicide application are allowed to set fertile seed.

This means drive weed numbers down and use diverse crop rotations, which in turn gives you plenty of options to use a range of non herbicide weed tactics. Combined with competitive crops, good timing of operations and effective spray practices you are on the way to putting herbicide resistance well into the future.

While tank mixing solid rates of different modes of action can be effective, many growers will be too late for this tactic as they already have resistance to at least one of these modes of action. For tank-mixing to work as a resistance management strategy both herbicides MUST BE fully effective on the weeds in question.

Mixing glyphosate and paraquat is not a viable option because of antagonism (biological) in the plant. When mixed together these products are not complementary and the paraquat works too rapidly for the glyphosate to be effectively translocated. This is the reason the double knock is utilised. Both products can be utilised on the same weed population without antagonism of the mix.

But before you go, ask yourself the question, “How do I know which of my herbicides still work?”

Blackberry nightshade Image: AGRONOMO


Being aware of sensitive crops and (geographical) areas when spraying

There has been rain and that means it’s weeds and spraying time. This time of year also lends itself to extremely risky spray conditions. Beautiful autumn weather is when surface temperature inversions are most common. For more information on inversions read my previous blogs here and here.

Strong inversion conditions March 2016. Image: AGRONOMORemember that all pesticides drift, it is just that some, such as Group I herbicides like 2,4-D, have a recognisable odour and produce unique symptoms on sensitive vegetation.

 

So what is the problem with off-target movement of pesticide? The most obvious agricultural issue is damage to sensitive crops. For example in the 2007-08 cotton growing season it was estimated that 10 per cent of the Australian cotton crop has some level of herbicide damage costing $5 million.

The second agricultural issue is pesticide residues. Organic farmers certainly don’t want anyone else’s pesticides. Drift is a particular problem when a crop is getting close to harvest. Signing a vendor declaration that you haven’t used certain pesticides gets complicated when the purchaser tests the product and it is ‘contaminated’.

Some of our major trading partners also have zero tolerance for certain pesticides. Ship loads of grain have been turned around and sent back for such breeches. The wine grape industry is particularly aware of the potential effects of unwanted residues on their markets.

Contamination of the natural and human environments is also a major concern.

Sensitive areas

Other than showing a duty of care, reading and following the label, using buffer zones and using best practice application, we need to be aware of sensitive areas in the vicinity of the farm when spraying. Talk to your neighbours and find out what crops they will have in, particularly in paddocks along the boundary. Be aware of state restrictions on pesticide use and spraying.

Some Australian states have restrictions on spraying in or near ‘sensitive’ areas. Western Australia has listed most Group I herbicides as ‘Scheduled’ meaning they cannot be used within certain distances of sensitive crops and high volatile 2,4-D ester is banned within 5 km of a commercially sensitive crop (vineyards or tomatoes), within 19 km of the Geraldton post office and within the Swan Valley, or within 10 km of the Kununurra Post Office. High volatile ester is not registered any other state or territory.

Victoria has nine designated areas where the type of pesticide and its application is regulated.

Agricultural Chemical Control areas in Victoria. Source: Agriculture VictoriaThe cotton industry has led the way with on online mapping with 95% of cotton crops mapped.  There is no excuse to say you didn’t know there is cotton nearby.

Cotton field awareness map for the western Riverina. Source: Cotton Australia & Cotton CRDCWestern Australia also has a voluntary system of registering your pesticide sensitive crop with the Department of Agriculture & Food WA.

DAFWA sensitive areas map 2015The map highlights organic farms, vineyards, tree crops, vegetable, bee hives and aquaculture sites. Being voluntary not all WA sensitive crops are mapped and a quick comparison with Google Earth will show additional vineyards and orchards. Another problem is that most broadacre farmers I have spoken with are unaware that this map of sensitive crops exits.  This is ironic because much of the potential drift affecting these sensitive crops could come from cropping country.

When it is spray time, do some planning, look at the weather forecast and for any potential risks, talk to your neighbours, use the right gear and get that pesticide where it is meant to be.

Spraying at night - minimising the risks Part 2 - surface temperature inversions

In the past we were always told to worry about strong winds when spraying. We now know that low wind conditions can be as bad or worse. New and reviewed herbicide labels since 2008 state that you must not spray during a surface temperature inversion.

What is a surface temperature inversion?

At sunset the ground loses heat and under low wind conditions air close to the ground cools while air above it is warmer. The air doesn’t mix and is described as being stable. Air temperature increases with height compared with during the day when air temperature most often decreases with height.

When this occurs close to the ground it is called a surface temperature inversion.

 

Typical inversion profiles during night and day. In an inversion the air warms to the top of the inversion. Source: G Tepper

In a surface temperature inversion the point where the temperature stops increasing and begins to decrease is the top of the inversion layer. This is usually the top level of suspended particles such as dust, smoke and small spray droplets or vapour.

Note that these inversions can act as a barrier to regional winds which go over the top of the inversion preventing mixing of the air. This means that inversions can co-exist with higher wind speeds such as greater than 20 kph.

About 30 minutes after sunrise smoke from wood heaters not mixing and moving parallel to the ground due to a surface temperature inversion. Image: AGRONOMO

What is the big deal with surface temperature inversions?

In November-December 2015 large areas of sensitive crops in NSW and Queensland have been damaged by spray drift, largely through spraying during inversion conditions. See the APVMA press release http://apvma.gov.au/node/19546 saying they won’t take action at this point. Hmm.

Because inversions prevent the mixing of air, any suspended fine droplets and particles, including spray, can move off in any direction to be deposited up to 20 km away once the inversion breaks the next day.

Cold air drainage within the inversion will cause fine droplets and particles to accumulate in the low parts of the landscape.

Remember that spray drift creates a number of major issues including crop damage, damage to sensitive vegetation and contamination of water and produce. Have you signed a declaration saying that you haven’t applied certain chemicals? You might not have, however contamination could have occurred via drift and you could be paying the price through rejection of your product.

Visual clues to indicate the existence of an inversion

  • Formation of mist or fog
  • Smoke of dust hanging in the air and moving horizontally
  • Flattening of clouds as evening approaches

 As evening sets in fluffy (cumulus) clouds flattening is a sign of impending inversion formation. Don't mix another spray tank! Image:AGRONOMO

Rules of thumb – Conditions necessary for inversions to form Source: National Working Party on Pesticide Application  

  • A reduction in wind speed to below 11 kph is necessary for all seasons.
  • In summer, a fall of at least 4°C from maximum temperature recorded on the day promotes an inversion an hour after sunset.
  • In winter, a fall of at least 2°C from the maximum temperature recorded on the day promote an inversion even an hour before sunset.
  • If the difference between the observed maximum temperature and forecast minimum temperature is 10°C or more then there is a 90% risk of inversion conditions at sunrise.

Research funded by the GRDC is currently being conducted by Graeme Tepper and Warwick Grace to predict the formation of surface temperature inversions and assign risks for night spraying. The research is well advanced in Western Australia and will be continued in more complex terrain (i.e. not WA) over the next 12 months. Yes, WA is pretty flat.

Nufarm Spraywise Decisions™  and Syngenta’s Weather forecast are tools you should all be using for planning your spray program. 

Spraying at night - minimising the risks - Part 1

Most broadacre growers want the capacity to spray their whole farm within about a ten day period or less if possible. Generally the first way to get more spraying done in a limited time period is to spray at night. The widespread adoption of auto-steer and tram-tracking has meant that spraying at night is easier to do, thus giving more hours spraying per day.

Night spraying has also been promoted as giving better weed control because it is cooler with higher humidity so target weeds will be less stressed. This however is not always the case and anyone looking at meteorological data over a 24 hour period in summer will see that meteorological conditions may not necessarily differ much between night and day.

There is a lot of preparation for successful, low risk night spraying. Image:AGRONOMOThis first article on night spraying discusses the issues encountered if there isn’t a surface temperature inversion. The second part will discuss surface temperature inversions and why they are bad news for spraying.

No inversion, so you think you are covering the bases?

Despite trying to do all the right things such as using a coarser droplet spectrum with matching application volume and keeping within the ground speed limits of your sprayer significant drift can occur with night spraying. Night spraying can deposit 5 times the amout of spray into the air compared with spraying diring daylight hours.

To demonstrate what can happen I will discuss research conducted by Bill Gordon Consulting in northern NSW comparing drift from night versus day spraying.

A 55 ha paddock was sprayed at 2:30 am and again at 7:30 am using a 36 m boom travelling at 22 kph, with Teejet AIXR 11002 nozzles, 50 L/ha at 4 bar producing a coarse spray quality.

Herbicide drift was measured 80 m downwind of the paddock using a 20 m high collection tower.

The experiment showed that less than 0.5% of total spray applied to the paddock was collected at the tower during the daylight application compared with 1.5% from the night application. This means there was virtually one hectare’s worth of spray heading downwind from the sprayed paddock at night despite the “acceptable” spray conditions. Looking at the meteorological data below there was little difference between the two application times.

Table 1: Meteorological conditions at time of spraying


Wind Speed (km/hr)

Wind Direction (°)

Temperature (°C)

Relative Humidity (%)

Night (2:30 am)

12

19

26

64

Day (7:30 am)

18

4

29

61

Despite there being no surface temperature inversion there was still 3 times the spray in the air moving downwind at night. Higher daytime wind speed would have created more mixing of the air and forced droplets down to the target compared with night spraying. 

The other thing to consider is it isn’t just what you do, but the cumulative effects of other sprayers in the local area. Often neighbours will be spraying at night launching small amounts of spray into the air which can accumulate in downwind areas of the landscape and becomes a much bigger problem to sensitive vegetation in those areas.

How to reduce the problems with night spraying?

  • DO NOT spray during a surface temperature inversion.
  • Keep measuring meteorological conditions during spraying and stop spraying if conditions deteriorate. Have a pre-determined cut-off for when you will stop.
  • Use extremely coarse (XC) spray quality – in this experiment XC spray quality would have reduced drift to 0.5% for the same conditions. Keep in mind the suitability of these coarse droplets on the target and the product to be used and the need to go to increase application volume as spray quality becomes coarser.
  • Slow down and keep boom height to a minimum – higher speeds increase the volume of finer droplets being lifted behind the machine creating a plume of spray lifting 15 to 20 m into the air. Higher speeds usually means lifting the boom. Lifting boom height from 50 to 70 cm above the target increases drift potential 4 times while going from 50 to 100 cm increases it 10 times.
  • Only spray paddocks with good catch surfaces, such as stubble or dense vegetation.
  • Make sure you know if there are sensitive areas downwind.

Spraying paddocks with poor droplet catch surfaces like this will increase the likelihood of spray drift, especially with night spraying. Image: AGRONOMO

The next blog will explain surface temperature inversions and why most labels state that you are not to spray if an inversion has formed.